首页> 外文OA文献 >Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence
【2h】

Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence

机译:全息量子纠错码:用于体/边界对应的玩具模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We propose a family of exactly solvable toy models for the AdS/CFT correspondence based on a novel construction of quantum error-correcting codes with a tensor network structure. Our building block is a special type of tensor with maximal entanglement along any bipartition, which gives rise to an isometry from the bulk Hilbert space to the boundary Hilbert space. The entire tensor network is an encoder for a quantum error-correcting code, where the bulk and boundary degrees of freedom may be identified as logical and physical degrees of freedom respectively. These models capture key features of entanglement in the AdS/CFT correspondence; in particular, the Ryu-Takayanagi formula and the negativity of tripartite information are obeyed exactly in many cases. That bulk logical operators can be represented on multiple boundary regions mimics the Rindlerwedge reconstruction of boundary operators from bulk operators, realizing explicitly the quantum error-correcting features of AdS/CFT recently proposed in [1].
机译:我们基于具有张量网络结构的量子纠错码的新颖构造,为AdS / CFT对应关系提出了一组完全可求解的玩具模型。我们的构建块是一种特殊类型的张量,该张量在任何划分上都具有最大的纠缠度,从而导致从整体希尔伯特空间到边界希尔伯特空间的等距。整个张量网络是用于量子纠错码的编码器,其中体积和边界自由度可以分别标识为逻辑和物理自由度。这些模型捕获了AdS / CFT对应关系中纠缠的主要特征;特别是在许多情况下,都严格遵守Ryu-Takayanagi公式和三方信息的负性。可以在多个边界区域上表示批量逻辑算子的方法类似于批量算子对边界算子的Rindlerwedge重构,从而明确实现了[1]中最近提出的AdS / CFT的量子纠错功能。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号